

ONE forest project receives funding from the European Commission's Horizon 2020 programme under grant agreement N° 101000406

SEP-210673543

A Multi-Criteria Decision Support System For A Common Forest Management to Strengthen Forest Resilience, Harmonise Stakeholder Interests and Ensure Sustainable Wood Flows

D2.3

Scientific Dataset of Forest Growth Simulations of Alpine Forests

DOCUMENTATION

A Multi-Criteria Decision Support System for a Common Forest Management to Strengthen Forest Resilience, Harmonise Stakeholder Interests and Ensure Sustainable Wood Flows

Deliverable 2.3

Title: Scientific Dataset of Forest Growth Simulations of Alpine Forests

Authors: Simon Mutterer, Timothy Thrippleton, Clemens Blattert, Leo G. Bont, Janine Schweier

Project funded by the European Commission within Horizon 2020		
Dissemination Level		
PU	Public	Х
CO	D Confidential,	
	_only_for_members_of_the_consortium_(including_the_Commission_Services)	

Type: Report (R)

Disclaimer

This document reflects only the authors' view and not those of the European Community. This work may rely on data from sources external to the members of the ONEforest project consortium. Members of the Consortium do not accept liability for loss or damage suffered by any third party because of errors or inaccuracies in such data. The information in this document is provided "as is" and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and neither the European Community nor any member of the ONEforest Consortium is liable for any use that may be made of the information.

ONE forest project receives funding from the European Commission's Horizon 2020 programme under grant agreement N^ 101000406

History

Version	Date	Modified by	Modification reason
V01.0	2023-02-09	Simon Mutterer, Timothy Thrippleton, Clemens Blattert, Leo G. Bont, Janine Schweier	
V01.1	2023-02-15	Martin Brunsmeier	Quality Revision
V01.2	2023-02-15	Simon Mutterer, Clemens Blattert, Janine Schweier	
V0.1.3	2023-02-16	Sandra Krommes	Final version

This project has received funding from the European Union's

Horizon 2020 Research and Innovation Programme under Grant

Agreement №101000406.

More information available at https://oneforest.eu

Executive summary

This scientific dataset of forest growth simulation of Alpine forests was developed in the frame of the EU project ONEforest and refers to the canton of Grisons, which is one out of four case study regions in the project.

Potential forest stand development simulations were conducted with the forest model ForClim. The simulations were carried out under no management and four alternative forest management strategies for a time horizon of 40 years (2020-2060).

To conduct the simulations for the overall canton, the approach of representative stand types was implemented and in total, 20 representative stand types were defined for the simulations to account for the biogeographic gradient and forest conditions in Grison. The database of the Swiss National Forest Inventory for Grisons was used for the definition of the representative stand types and initialization of the initial forest conditions for forest growth simulations.

The simulation outputs serve as basis for the next project milestone which aims to calculate biodiversity and forest ecosystem service indicators.

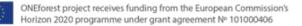


Table of content

Hist	Ory	. ii
List	of Tables	.iv
1	Introduction	.5
2	Individual tree output tables 'tr.csv'	.6
3	Stand level output tables 'st.csv'	.7
4	References	.8
Арр	endix A. Representative Stand Types: Abbreviations	.9
Арр	endix B. ForClim tree species abbreviations	10

List of Tables

Table 1: Overview of provided datasets on individual tree level. For each simulated management scenario one separate file is provided	.6
Table 2: Abbreviations and descriptions of columns in the 'tr.csv'-datasets	.6
Table 3: Overview of provided datasets with aggregated simulation results on stand level	.7
Table 4: Abbreviations and descriptions of attributes in in 'st.csv'-datasets	.7
Table 5: Abbreviations (StandType) for assigned Representative Stand Types	.9
Table 6: Tree species names and abbreviations	10

1 Introduction

The aim of this deliverable is to provide a scientific dataset of forest growth simulations of Alpine forests. The simulation results of WP2, which were simulated with the forest model ForClim, were therefore aligned with the simulations of WP4 and their model Waldplaner (Hansen and Nagel, 2014). The alignment of the datasets allows to facilitate the calculation of biodiversity and ecosystem service indicators, which is part of the upcoming deliverable (D.2.2). The ForClim cohort database ('db_cohorts.sql') was therefore reshaped following the format of the Waldplaner individual tree output 'tr.csv' and the stand-level output 'st.csv'.

The deliverable refers to the alpine Case Study Region (CSR), which is represented by canton of Grisons located in the eastern part of Switzerland. With a land area of about 7105 km², Grisons is the largest canton of Switzerland and highly diverse in terms of its biogeographical regions, encompassing northern, central, and also southern alpine environmental conditions with an elevation ranging from 260 to 4049 meters a.s.l.

All presented datasets are based on forest growth simulations which were carried out with the dynamic forest model ForClim V4.0.1 (Huber et al., 2020). Simulations were carried out under present (historic) climatic conditions assuming a climate from 1980 to 2010 from the WorldClim2 database (Fick and Hijmans, 2017). A detailed description of the simulation approach, simulation settings and management strategies can be found in the earlier submitted **deliverable D2.4**.

The simulations of stand development were carried out under no management (NO) and four alternative forest management strategies for a time horizon of 40 years (2020-2060):

- 1. Business-as-usual (BAU): Focus on protection function and multifunctionality
- 2. Intensified management intensity (HIGH): Focus on wood production
- 3. Extensified management intensity (LOW): Focus on biodiversity
- 4. Climate-adapted forest management (ClimAdapt): similar to BAU + enhancing forests adaptive capacity to climate change by planting of climate adapted future tree species

To conduct the forest growth simulations for the overall canton of Grisons, the approach of Representative Stand Types (RST) was implemented (Bircher et al., 2015; e.g. Seidl et al., 2007). In total, 20 RST were defined for the simulations to account for the biogeographic gradient and forest conditions in Grison. The database of the Swiss National Forest Inventory (NFI) for Grisons (Brändli et al., 2020) was used for the definition of RSTs and initialization of the initial forest conditions for forest growth simulations. The detailed descriptions and definition of the key parameter for stratification of the CSR were accomplished and submitted in **deliverable D2.1**.

2 Individual tree output tables 'tr.csv'

The **individual tree output tables ('tr.csv')** describe the development of trees for all RST under the alternative management scenarios. An overview on the provided files is given in Table 1, with each file containing the information described in Table 2.

Table 1: Overview of provided datasets on individual tree level. For each simulated management scenario one separate file is provided.

Dataset	Simulation scenario	
tr_Grison_Hist_NO.csv	No management, historic climate	
tr_Grison_Hist_BAU.csv	BAU management, historic climate	
tr_Grison_Hist_LOW.csv	LOW management, historic climate	
tr_Grison_Hist_HIGH.csv	HIGH management, historic climate	
tr_Grison_Hist_ClimAdapt.csv	ClimAdapt management, historic climate	

Please note:

- ForClim simulates forest developments within small patches (here 500 m²). Each simulation covers 200 patches to account for stochastic variability that occurs in stand development. Each Stand Type (RST) in the tr,csv output table hence refers to a forest stand with a size of 10 ha.
- Instead of individual trees, ForClim simulates the development of cohorts, i.e. groups of trees of the same age, size and species (Bugmann, 2001). To convert the ForClim output table into an individual tree table, the trees within each cohort were assigned to individual rows. As a consequence, however, there is no individual tree-ID available, only a cohort-ID. The age of trees is not simulated.
- Alive and dead trees are contained in the individual tree table. Trees therefore have the information 'status', which can be 'alive', 'dead' (i.e. died from natural mortality) or 'harvested' (i.e. removed by harvest). The 'dead' or 'harvested' trees occur only until the year of mortality/harvest and disappear from the dataset in later time steps.

Attribute	Description	unit
StandType	be abbreviated name of representative stand type (see Appendix A)	
Mng	simulated management scenario (see list above)	
year	respective output year	
patch	ID of patch	
patchsize	area of each patch (by default 500 m ²)	[m ²]
cohortno cohort ID		
species ForClim tree species abbreviation (see Appendix B)		
status	information whether a tree is 'alive', 'dead' (died by natural mortality)	
	or 'harvested' (removed by harvest) at this time	
dbh_cm	diameter at breast height	[cm]
height_m	height	[m]
vol_m3	individual tree volume	[m ³]
fol_area_m2	foliage area of individual tree (refers to all foliage of the tree crown)	[m ²]
LAI	leaf area index	

Table 2: Abbreviations and descriptions of columns in the 'tr.csv'-datasets.

3 Stand level output tables 'st.csv'

The **stand output tables ('st.csv')** describe the simulation output aggregated on stand level under the alternative management scenarios. An overview on the provided files is given in Table 3, with each file containing the information described in Table 4.

Table 3: Overview of provided datasets with aggregated simulation results on stand level.

Dataset	Simulation scenario	
st_Grison_Hist_NO.csv	No management, historic climate	
st_Grison_Hist_BAU.csv	BAU management, historic climate	
st_Grison_Hist_LOW.csv	LOW management, historic climate	
st_Grison_Hist_HIGH.csv	HIGH management, historic climate	
st_Grison_Hist_ClimAdapt.csv	ClimAdapt management, historic climate	

Please note the same information as above:

- ForClim simulates forest developments within small patches (here 500 m²) of land and each simulation covers 200 patches, to account for stochastic variability that occurs in stand development. Simulated forest stand had thus a size of 10 ha.
- Aggregated stand results of the st.csv were however scaled to value per hectare.

The stand-level output tables ('st.csv') contain the following information:

Table 4: Abbreviations and descriptions of attributes in in 'st.csv'-datasets.

Attribute	Description	unit
StandType	abbreviated name of representative stand type of (see Appendix A)	
Mng	simulated management scenario (see list above)	
year	respective output year	
size	simulated stand area	[ha]
lai	leaf area index (mean across stand)	
h100	mean height of 100 largest trees	[m]
bl_percentage	percentage of broadleaved trees	[%]
ba_m2_ha	basal area	[m²/ha]
vol_m3_ha	growing stock	[m ³ /ha]
ddom	diameter of the 100 largest trees	[cm]
n_ha	number of trees per hectare	[n/ha]

4 References

Bircher, N., Cailleret, M., Huber, M., Bugmann, H., 2015. Empfindlichkeit typischer Schweizer Waldbestände auf den Klimawandel. Schweizerische Zeitschrift für Forstwesen 166, 408–419. https://doi.org/10.3188/szf.2015.0408.

Brändli, U.-B., Abegg, M., Allgaier Leuch, B., 2020. Schweizerisches Landesforstinventar. Ergebnisse der vierten Erhebung 2009–2017. Birmensdorf, Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft. Bern, Bundesamt für Umwelt.

Bugmann, H., 2001. A Review of Forest Gap Models. Climatic Change 51, 259–305. https://doi.org/10.1023/A:1012525626267.

Fick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol 37, 4302–4315. https://doi.org/10.1002/joc.5086.

Hansen, J., Nagel, J., 2014. Waldwachstumskundliche Softwaresysteme auf Basis von TreeGrOSS. Göttingen University Press, Göttingen.

Huber, N., Bugmann, H., Lafond, V., 2020. Capturing ecological processes in dynamic forest models: why there is no silver bullet to cope with complexity. Ecosphere 11. https://doi.org/10.1002/ecs2.3109.

Seidl, R., Rammer, W., Jäger, D., Currie, W.S., Lexer, M.J., 2007. Assessing trade-offs between carbon sequestration and timber production within a framework of multi-purpose forestry in Austria. Forest Ecology and Management 248, 64–79. https://doi.org/10.1016/j.foreco.2007.02.035.

Appendix A. Representative Stand Types: Abbreviations

Similar as done for the national scale by Bircher et al. (2015), inventory plots of the fourth Swiss NFI (Brändli et al., 2020) were stratified in terms of (1) ecoregion, (2) elevation zone, (3) tree species assemblage and (4) stand age.

Please note: The detailed descriptions and definition of the key parameter for stratification of the CSR have been accomplished and submitted in an earlier deliverable (D2.1).

Description StandType NAlp_B_M_Age50 Northern Alps, Spruce-Beech forest, montane (Age 50 yrs) NAlp_B_M_Age100 Northern Alps, Spruce-Beech forest, montane (Age 100 yrs) NAlp_FS_HM_Age50 Northern Alps, Spruce-Fir forest, high montane (50 yrs) Northern Alps, Spruce-Fir forest, high montane (100 yrs) NAlp_FS_HM_Age100 NAlp_S_SA_Age50 Northern Alps, Spruce forest, subalpine (50 yrs) NAlp S SA Age100 Northern Alps, Spruce forest, subalpine (100 yrs) Central Alps, Spruce-Pine forest, high montane (50 yrs) CAlp SP HM Age50 CAlp_SP_HM_Age100 Central Alps, Spruce-Pine forest, high montane (100 yrs) CAlp S S Age50 Central Alps, Spruce forest, subalpine (50 vrs) Central Alps, Spruce forest, subalpine (100 yrs) CAlp_S_S_Age100 Central Alps, Spruce-Larch forest, upper subalpine (50 yrs) CAlp_LS_US_Age50 Central Alps, Spruce-Larch forest, upper subalpine (100 yrs) CAlp LS US Age100 SAlp LO M Age50 Southern Alps, Lime-Oak-Chestnut forest, montane (50 yrs) SAlp LO M Age100 Southern Alps, Lime-Oak-Chestnut forest, montane (100 yrs) SAlp_S_S_Age50 Southern Alps, Spruce forest, subalpine (50 yrs) Southern Alps, Spruce forest, subalpine (100 yrs) SAlp S S Age100 Southern Alps, Larch forest, upper subalpine (50 yrs) SAlp_L_US_Age50 SAlp L US Age100 Southern Alps, Larch forest, upper subalpine (100 yrs) SAlp FS HM Age50 Southern Alps, Spruce-Fir forest, high montane (50 yrs) SAlp FS HM Age100 Southern Alps: Spruce-Fir forest, high montane (100 yrs)

Table 5: Abbreviations (StandType) for assigned Representative Stand Types.

Appendix B. ForClim tree species abbreviations

Table 6: Tree species names and abbreviations.

Tree species	ForClim abbreviation
Abies alba	AAlb
Acer campestre	ACam
Acer pseudoplatanus	APse
Acer platanoides	APla
Alnus incana	Alnc
Alnus glutinosa	AGlu
Betula pendula	BPen
Castanea sativa	CSat
Carpinus betulus	CBet
Corylus avellana	CAve
Fagus sylvatica	FSyl
Fraxinus excelsior	FExc
Larix decidua	LDec
Picea abies	PAbi
Pinus cembra	PCem
Pinus sylvestris	PSyl
Pinus montana	PMon
Populus tremula	PTre
Quercus petraea	QPet
Quercus pubescens	QPub
Quercus robur	QRob
Salix alba	SAIb
Sorbus aria	SAri
Sorbus aucuparia	SAuc
Taxus baccata	ТВас
Tilia cordata	TCor
Tilia platyphyllos	TPIa
Ulmus glabra	UGla

ONEforest project receives funding from the European Commission's Horizon 2020 programme under grant agreement Nº 101000406